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In their recent note [J. Math. Chem. 16 (1994) 211-215], S im.sek and Yal~in claim 
the elementary exact solvability of an s-wave radial Schr6dinger equation with a shifted 
P6schl-Teller potential. We re-derive and correct their formulae and weaken their con- 
clusions: Their Jacobi polynomial wavefunctions do not comply with a boundary condi- 
tion in the origin. After its inclusion, at most a triplet of their quasi-exact bound 
states may survive, and we have to return to non-polynomial hypergeometric wavefunc- 
tions ~p(r) in general. 

1. I n t r o d u c t i o n  

In applied quan tum mechanics, an analysis of  complicated systems is usually 
based on an approximate  solution of  dynamical  equations. A major i ty  of  these 
equations must  be solved numerically. The local and central potential  models are 
an exception: Their use enables us to convert  the realistic three-dimensional  
Schr6dinger equation, i.e., a partial differential equation 

h 2 
~m A ~ ( r )  + g(r)tg(r) -= g ~ ( r )  (1) 

with V(r) - V([r[), into an infinite set of  its ordinary differential (so-called radial) 
descendants 

d 2 l(l + 1) 
dr 2 ~b(r) + r2 ~b(r) + V(r)~b(r) = E~b(r) r E (0, c~),  (2) 

numbered  by the angular  m o m e n t u m  quantum number  l = 0, 1, . . . .  
An exact analytic solvability of  the full system (2) is restricted to a few excep- 

tional forces ([1], p. 417). Its t runcat ion to a finite subset (l~lmax) facilitates the 
solution and suffices for the major i ty  of  phenomenological  purposes. Even the 
most  drastic restriction of  eq. (2) to the lowest partial wave (so-called s-wave 
approximation,  l =/max = 0) proves well mot ivated (cf., e.g., [2]). Recently,  S. im.sek 
and Yal¢in claimed the exact and elementary solvability of  the four-parametr ic  s- 
wave family 
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d 2 A exp ( -2a r )  B exp ( -2a r )  
- dr 2 ~b(r) [1 4- b 2 exp(-Zar) ]  2 ~b(r) 4 [1 - b 2 exp(-2ar ) ]  2 ~b(r) = E~b(r) (3) 

of  radial Schr6dinger  equat ions  for bound  states (cf. eq. (17) in ref. [3]). In accor- 
dance with their construct ion,  energies E~, n = 0, 1 , . . . ,  nmax, are expressed by a 
closed formula,  

2 2 E , = - a  [/3] , / 3 = / 3 , , = 7 - c ~ - 2 n - 1  , (4) 

a = -~ 14- a2 b~-5 , 3, = -~ 14- a2 b--- 5 

(cf. eq. (21) in ref. [3]), etc. In the present paper,  we intend to show that  (and why) 
the S.im.sek and Yal~in's result is incorrect. Marginally,  we shall outl ine how their 
m e t h o d  might  be amended .  

2. B o u n d  s ta te s  in  t he  s t a n d a r d  a p p r o a c h  

2.1. H Y P E R G E O M E T R I C  S O L U T I O N S  

Let us re-define the parameter  b 2 = exp(-26)  with 6 E ( - o c ,  oo) and re-write 
the S. im.sek and Yal~in's s-wave potent ial  in the shifted P6schl-Tel ler  fo rm 

V(r) = A B I 

-1 

coshZ(ar + 5) q sinh2(ar + 6) r E (0, oo).  (5) 

Fo r  the real and, say, nonnegat ive  b's (i.e., b = exp(-6) ) ,  this interact ion exhibits 
a strong, impenetrable  singularity at r = -6 /a .  For  the real a's, we may  restrict our  
a t ten t ion  to nonnegat ive  5's, therefore. 

First,  we re-scale the coordinates  and shift the origin, r' = ar 4- 6. After  such a 
re-ar rangement ,  wavefunct ions  remain uninfluenced, ~(r) --+ x'(r ' ) ,  bu t  the energy 
and the coupl ings change. In the resulting "p r imed"  differential eq. (3), 

d 2 A' f f  
- d / 2 X ' ( r ' ) - c o s h 2 r ,  X'(r') 4-sinh2------~x'(r')= E'x'(r' ) r' E (5, oe) (6) 

with E ' = E / a  2, A ' = A e x p ( 2 6 ) / 4 a  2 and B'=Bexp(26) /4a  2, we may  put  
_ !) and E' = - 4 ~  2 (with, say, non-  A'="y2-¼=4#(# !),2 B'=c~ 2-¼=4u(u-2 

negative #, u and  ~) and see that  our  class of  interactions forms a three-parametr ic  
family in effect, V(r) = V (~'~'~) (r). 

The  second change of  variables, 

y = cosh 2 / ,  X,(/)  = yU(y_ 1)~q0(y), (7) 

converts  eq. (6) into a Gauss '  hypergeometr ic  equat ion 
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d 2 d 
y ( y - 1 )  ~-~v2 ~p(y ) + [(2# + 2 u +  1 ) y -  2 # - 1 / 2 ]  ~vv qo(y) 

+ [u + _  21 (y) = 0 .  (8) 

Hence, the S.il~.ek and Yal~in's bound-state problem proves solvable in terms of 
the hypergeometric power series 2/71 (s, t; c; y) with parameters 

1 s = # + u + ~ ,  t = # + u - e c ,  c = 2 # + ~ .  

Thus, an explicit general representation of solutions ~p(y), 

Cly  -s 2F1(s, d; e;1 - 1/y) + C2y- f  (y - 1) 1-e 2Fl(f, 1 - t ; 2 -  e;1 - 1/y)  , 

(ft. 
formula 

qo(y) = D l y  -s 2F1 (s, d; 2n + 1; l / y )  + D2y -t  2F1 (t, 1 - f ; - 2 n  + 1; 1/y) 

(cf. [4], ft. 15.5.7-15.5.8) may prove more adequate at large distances, y ~ oo. 

(9) 

d = s - c + l = - # + u + ~ ; + l / 2 ,  

e = s + t - c + l = 2 u + l / 2 ,  f = c - t = # - u + ~ + l / 2  (10) 

15.5.11-15.5.12 in [4]) is suitable for analysis near y ~ 1, while the use of 

(11) 

2.2. B O U N D A R Y  C O N D I T I O N S  

In accordance with textbooks, bound states (pertaining to any eq. (2)) may be 
constructed as superpositions of an arbitrary pair of independent solutions, 

~b(BS)(r) = C l ~ b l ( r )  n t- C2~b2(r) (12) 

(cf., e.g., [5]). The normalizability of these wavefunctions must be required, 
II ( s)ll < ~ .  At l~> 1, this normalizability may be shown equivalent to a pair of 
boundary conditions. Thus, one may use the asymptotic boundary condition 

~b(roo) = 0, roo ~ oo, (13) 

complemented by its/-dependent threshold counterpart 

~b(ro) ~ r l+l, ro ~ O. (14) 

Even for sufficiently well-behaved potentials, the situation is slightly different in 
s-waves where the unphysical solution remains well behaved near the origin, 
~b(irregular) ( r0)  "~ r - l ,  ro '~ O. Its elimination (14) has, definitely, nothing to do with 
normalizability (cf. [1], p. 332, or [5] for a more thorough explanation). This is, pre- 
sumably, the hidden reason for a complete omission of eq. (14) from the analysis 
in ref. [3] and, hence, a formal core of our present comment. 

In the computations, the pair of restrictions (13) and (14) is rarely used to specify 
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both the coefficients C~ and the binding energy at once. More often, a component 
(say, ¢1 (r)) is chosen as compatible with boundary condition (14) in the origin. 
Only then, the resulting (so-called regular) solution ¢(reg)(r) is subdued to the sec- 
ond constraint (13). This defines the energies in a way exemplified in section 3.1 
below. 

Alternatively, one may fix the asymptotics (13) and construct the so-called Jost 
solutions ¢(Jost)(r) first. In our present example, after the redefinition ¢ ~ qo (eq. 
(7)), the correct asymptotic behaviour pattern 

(/:?(Jost)(Y) "~ y--S, y >> 1, (15) 

will be most easily separated from the unphysical ~(unphys.)(Y) ~ y - t .  In the not 
too singular cases, the pertaining s-wave eigenvalue condition (14) reads 

¢(Jost) (0) = 0, l = 0 .  (16) 

Its use has thoroughly been discussed in our earlier work [6]. 
The manifestly Jost wavefunctions of S.im.sek and Yalgin do not satisfy eq. (16) 

in general - after all the changes of variables, eq. (16) implies that we must postu- 
late, as an eigenvalue condition, the nodal zero 

~(Jost)(Y0) = 0, Y0 = cosh 26, 6 > 0, (17) 

in all the shifted "non-PSschl-Teller" cases. Incidentally, the P6schl-Teller limit 
---, 0 induces a strong singularity in eq. (3) itself. A modified boundary condition 

qp(Jost)Ct,0) ( CX3, Y0 ~ 1, U > 1/4, 6 = 0, (18) 

must be employed near the threshold in such a case ([1], p. 392). 

3. B o u n d  states as Jacobi  polynomials  

3.1. T H E  P O S C H L - T E L L E R  D E G E N E R A C Y ,  6 = 0 

Irrespectively of the value of 6, boundary conditions should be met via a varia- 
tion of the above general solutions of the differential SchrSdinger eq. (8). At 
6 = 0, an undesirable singularity of the general solution (10) in the origin stems 
from the negative exponent 1 - e < 0 in its second component. This (i.e., eq. (18)) 
implies that we must pick up C2 = 0 there. 

An analytic-continuation re-arrangement of the function jC~Creg) (Y) / C1, 

F(e)I'(-2~c) 2F1 (s, d; 2e; + 1; l/y) + y2,~ P(e)I'(2~) 2F1 (1 - f ,  t;a - 2~;; l /y) 
r(1 - f )  l"(t) r ( s ) r (d )  

(19) 

([4], f. 15.3.6) describes the correct asymptotic behaviour violated by the second 
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componen t .  Its suppression (13) may  only be media ted  by the choice of  a negative 
a rgumen t  in a P-funct ion in the denomina tor .  There is just  one such choice, 
d = - n ,  n = 0, 1 , . . . ,  and  it quantizes the energies precisely in the way prescribed 
by eq. (4) above. The  hypergeometr ic  formula  for wavefunct ions  degenerates  to a 
polynomial ,  

~o(y) ~ y-S 2F1 (2/z - n - 1 / 2 , - n ;  2m + 1; l /y)  ~,, y-S 2F1 ( s , - n ;  e; 1 - l /y)  

(20) 

and  returns us back to the wel l -known PSschl-Teller  bound  states ([2], p. 89). 
In a slight modif ica t ion  of  the latter construct ion,  we start  f rom the Jost  solut ion 

(11). Re-ar ranging  the D2 = 0 series as an analyt ic-cont inuat ion superposi t ion 

ySqo(y) _ p(a - e)P( l  + 2~) 
2Fl(s,d;e;1 - l /y)  

D1 r ( f ) r ( 1  - t) 

+ ( 1 -  1/y )  1-e P(1 - e ) P ( 2 ~ +  1) 
V(s)V(d) 2Fl(1 - t,f; 12 - e;a - 1/y) (21) 

([4], f. 15.3.6), we notice tha t  the second te rm exhibits an irregular behaviour  at 
6 --- 0. Its suppress ion leads to the same quant iza t ion rule as above. 

3.2. THE SHIFTED POSCHL--TELLER POTENTIALS, 6 > 0 

Due to a certain h idden symmetry  of  hypergeometr ic  functions,  all the 6 = 0 
bound  states became expressible in terms of  e lementary Jacobi polynomials .  In sev- 
eral independent  contexts  ranging f rom analytic considerat ions up to the formal-  
ism of  supersymmetr ic  q u a n t u m  mechanics  [7], one would  not  really expect an 
extension of  such a Jacobi-solvabili ty p h e n o m e n o n  beyond the already known  (so- 
called shape invar iant  [8]) class of  potentials.  Nevertheless,  a partial ,  incomplete  
general izat ion does not  seem excluded. 

At  6 > 0, condi t ion  (16) has to be satisfied a ty  = cosh 2 6, 

2F1 (s, d; 2~ + 1; 1 / cosh 2 6) = 0.  (22) 

Both  componen t s  of  eq. (21) may  now contr ibute  equally well. Whenever  the singu- 
larity 61-4" in the numera to r  of  the second componen t  remains finite, it m a y  be 
compensa ted  and regularized by a large value of  the funct ion F(d) = O(1 /A)  with 
a pe r tu rbed  integer a rgument  d = - N  + A in the denominator .  Thus,  we encounte r  
the loss of  polynomial i ty  and the left hand  side remains  an infinite series. The  roots  

= ~(6) mus t  be de te rmined  numerically.  At  the smallest  6's, the compensa t ion  
mechan i s m  with A = 0(64~-1) migh t  also be used as a s tar t ing poin t  o fper tu rba t ive  
construct ions .  

3.2.1. The "forgotten "boundary condition 
Let us accept  now the point  of  view of  S im.sek and Yal~in and assume tha t  a cer- 
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tain Jacobi polynomial represents a physical solution at 6 ¢- 0 as well. Such an 
assumption need not necessarily contradict our previous perturbative argumenta- 
t i on -  we must only fine tune the parameters and preserve the termination condition 
unchanged, A = 0. In such a case, eq. (20) extends its validity to shifted potentials 
and, in the S im.sek's and Yal~in's notation, we just postulate 

x(r) = A/'u~(1 - u 2 ) ( ° ~ + l / 2 ) / 2 p ( n e q t 3 ) ( 2 u 2  - 1). (23) 

Here, P denotes a Jacobi polynomial, 

2 - n ~ - ' ~ . ( N + c ~ ) ( n + / 3 ~ ( x - 1 ) n - r e ( X +  1) m (24) P(n~,~)(x) = 
m = 0 k - - / m  \ n  - m /  

(cf. [4], ch. 22) and the range of the new coordinate remains finite, 

2bexp(-ar) b < 1 . 
u = u(r) = 1 + b 2 exp(-Zar) ' 

On the occasion, two typographical errors are revealed in the original elementary 
formula for wavefunctions as printed, incorrectly, in ref. [3] under the number of 
eq. (22) [9]. 

Let us now analyse the condition of polynomiality A = 0 in more detail. We 
have u(r) ~ 0 near r ~ oo and, since 

P(~'~)(2u2 - 1 )  -~ e~ '~)( - l  ) = (-1)n ( n +n /3 ) , (25) 

we get the correct asymptotic r-dependence (13) of the polynomial x(r)'s. Near 
the origin, Jacobi polynomials differ from X (r) by an irrelevant nonzero factor, 

0 < u ( 0 ) = l / c o s h 6 <  1, 1 > 1-[u(0)]  2 = ( s i n h 6 / c o s h 6 )  2 > 0 .  (26) 

This reduces the second, threshold boundary condition to the relation 

P~(~'~) ( 1 -- sinh---~2 6 ) c o s h  2 6 =0 ,  6 > 0  , (27) 

which interrelates, polynomially, parameters 7 = 7( a, b,A), c~ = c~(a,b,B) and 
co = sinh 2 6(b) at each particular value of n, 

~ : o ( n + c ~ )  ( ' Y - c ~ - n -  l ) m n - m  (28) 

We may conclude that each S. ims.ek's and Yalgin's (corrected) elementary solution 
(23) represents a bound state if and only if the implicit eq. (28) relates its shift 
parameter b < 1 to the couplings A and B and to the scale parameter a in the under- 
lying (in the language of ref. [10], "quasi-exactly solvable") Schr6dinger equation 
(3). 
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3.2.2. The quasi-exact solutions 
At all the nonzero shifts 6 > 0, one may insist on the polynomiali ty of wavefunc- 

tions at a cost of  fixing parameters in the underlying potential. In the literature, 
such a solvability has been studied quite extensively [10] - in our V = V (~,7,6) (r), we 
shall hardly find more than three separate bound states in the exact Jacobi polyno- 
mial form. Seemingly, one must even search for the necessary roots of  eq. (28) 
numerically. In our final remark, let us show that a non-numerical solution of  the 
Jacobi-solvability eqs. (28) remains feasible, at the first few truncations n at least. 

Our first (obvious and negative) observation concerns the absence of  any real 
roots of eq. (28) at n = 0: One simply has P~3(x) - 1 identically. In contrast, the 
subsequent n > 1 physical boundary conditions (28), 

1 + a -  ( 7 -  a -  2)w = O, 

( 2 + a ) ( l + a ) - 2 ( 2 + a ) ( f - a - 3 ) w + ( 7 - a - 3 ) ( f - a - 4 ) w 2 = O ,  (29) 

provide the first few "dependent"  couplings 7 = 7j(a,w,n),J = 1 ,2 , . . .  ,n, in a 
closed form, 

71(a,w, 1) = 2 + a +  (1 +a)/w, 

71(a,w, 2) = 7 / 2 +  a + (2 + a)/w- v / l / 4 +  (2 + a)(1/w+ I / J ) ,  

"y2(a,w, 2) = 7 / 2 + a +  (2 + a)/ov + ¢ 1 / 4 +  (2+a)(1/w+ l /w2),  

• . ° 

(30) 

They remain real and positive (cf. also their next, n = 3 sample in table 1). This 
proves the existence of the exceptional S.imsek and Yalgin's Jacobi-polynomial 
bound states at 3 ¢ 0, and illustrates also the last and "missing" details of  their 
construction• 

A combinat ion of  the first two truncations n = 1 and n = 2 leads to the coupled 
system of equations (cf. (29)) and gives a mutual  compatibility condition 

l + a  
w - - - - ~ ,  nl = 1 , n 2 = 2 .  (31) 

Table  1 
The triple roots 3' = 3'1,2,3 (a,  w, 3) ofeq.  (28) - a sample. 

a = O . 1  a = l  a = l O  

0.1 8.439 28.71 71.15 13.85 38.71 85.44 83.32 137.9 213.8 
1 4.358 7.200 13,04 5.576 9.000 15.42 19.65 27.00 37.35 

10 4.102 5.203 6.924 5.007 6.167 8.026 14.18 15.97 18.75 
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The real -number  nature  of  this root  proves the existence and illustrates the form 
of  a doublet  of  the elementary S. im.sek and Yal~in's bound states at the correspond-  
ing 6 = 6(co). The problem of  doublets acquires a slightly simplified form at the spe- 
cial value of  co = sinh2 6 = 1. Under  this choice, a systematic analysis of  the pair 
of  equations 

Pn(~'~)(0) = 0, P(n~'#)(0) = 0 (32) 

enables us to re-write the second row in table 1 exactly, 

71(a, 1,3) = 2a  + (17 - x/73 + 24a ) /2 ,  

72(a, 1,3) = 2a  + 7, 73(a, 1,3) = 2a + (17 + v/73 + 24a ) /2 .  

The simplest possible triplet choice of nl -- 1, n2 = 2 and n3 ----- 3 provides, after an 
analogous algebra, the three non-numerical  and real roots a --- - 1 ,  a = - 2  and 
a --- - 3 .  Unfor tunate ly ,  they are negative and, hence, unacceptable. The existence 
of  triplets remains an open question. 

4. S u m m a r y  

The polynomial i ty  of  solutions of  Schr6dinger-type equations (which is, in itself, 
formally interesting, e.g., due to its relationship to some underlying Lie-algebraic 
structures [11]) need not  necessarily imply their applicability in quan tum 
mechanics.  We have seen that  a due care must  be paid to the s-wave boundary  con- 
ditions in the origin. After  their proper incorporation,  we have shown that  only a 
few S.imsek-Yalgin "exac t"  solutions survive: For  the related potential,  certain 
couplings must  be determined as roots of  complicated algebraic equations and 
cease to be arbitrary.  Moreover ,  all the remaining nonexceptional  bound  states 
must  still be constructed via an appropriate s tandard infinite Taylor  series techni- 
que or, at best, in terms of  some suitable - here: Gauss hypergeometr ic  - special 
functions. 
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