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Jacobi polynomials and bound states
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In their recent note [J. Math. Chem. 16 (1994) 211-215], Simsek and Yalgin claim
the elementary exact solvability of an s-wave radial Schrodinger equation with a shifted
Poschl-Teller potential. We re-derive and correct their formulae and weaken their con-
clusions: Their Jacobi polynomial wavefunctions do not comply with a boundary condi-
tion in the origin. After its inclusion, at most a triplet of their quasi-exact bound
states may survive, and we have to return to non-polynomial hypergeometric wavefunc-
tions ¥(r) in general.

1. Introduction

In applied quantum mechanics, an analysis of complicated systems is usually
based on an approximate solution of dynamical equations. A majority of these
equations must be solved numerically. The local and central potential models are
an exception: Their use enables us to convert the realistic three-dimensional
Schrodinger equation, i.e., a partial differential equation

hZ
— 3= AX() + V(1) U(r) = EL(r) (1)

with ¥V (r) = V(|r|), into an infinite set of its ordinary differential (so-called radial)
descendants

2
~ L+ 1 v = Bu) e 0,00), @

numbered by the angular momentum quantum number/ = 0,1, .. ..

An exact analytic solvability of the full system (2) is restricted to a few excep-
tional forces ([1], p. 417). Its truncation to a finite subset (! </max) facilitates the
solution and suffices for the majority of phenomenological purposes. Even the
most drastic restriction of eq. (2) to the lowest partial wave (so-called s-wave
approximation, / = Inax = 0) proves well motivated (cf., e.g., [2]). Recently, Simsek
and Yal¢in claimed the exact and elementary solvability of the four-parametric s-
wave family
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—Ez—z/)(r) _ Aexp(—2ar) Bexp(—2ar)
dr? [1 4+ b2exp(—2ar)] [1 — b2 exp(—2ar))
of radial Schrodinger equations for bound states (cf. eq. (17) in ref. [3]). In accor-

dance with their construction, energies E,, n =0, 1,. .., imax, are expressed by a
closed formula,

E,=-d*8?, B=fi=v-—a-2n—1, (4)

—1\/1+——B —1\/1+ A
*=3 20 1712 22b2

(cf. eq. (21) in ref. [3]), etc. In the present paper, we intend to show that (and why)
the Simsek and Yalgin’s result is incorrect. Marginally, we shall outline how their
method might be amended.

s¥(r) + (r) = E¥(r) (3)

2.Bound states in the standard approach
2.1. HYPERGEOMETRIC SOLUTIONS
Let us re-define the parameter b* = exp(—26) with § € (—o0, c0) and re-write
the Simsek and Yalgin’s s-wave potential in the shifted Poschl-Teller form
e A B

v = 4| cosh?(ar + 6) * sinh®(ar + 6) r€(0,00). ®)

For the real and, say, nonnegative &’s (i.e., b = exp(—¥§)), this interaction exhibits
a strong, impenetrable singularity at r = —§/a. For the real a’s, we may restrict our
attention to nonnegative §’s, therefore.

First, we re-scale the coordinates and shift the origin, ¥ = ar + 6. After such a
re-arrangement, wavefunctions remain uninfluenced, ¢(r) — x/(¥'), but the energy
and the couplings change. In the resulting “primed” differential eq. (3),

d2 A BI
—aple(r') - mx’(r') o r,X'(”) =EX(') r € (6 00) (6)
with E' = E/a*, A = Aexp(26)/4a*> and B’ = Bexp(26)/4a>, we may put
A=y —-i=4p(p-1), B =ca® -} =4v(v-1}) and E' = —4«? (with, say, non-
negative p, v and x) and see that our class of interactions forms a three-parametric
family in effect, V' (r) = V(@m0 (r).
The second change of variables,

y=cosh®r, X' () =y"-1)"0), 7)

converts eq. (6) into a Gauss’ hypergeometric equation
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2

YO~ 1)5560) +2u+ 20+ Dy =20 1/2]5‘}/9@)

+p+v)? = Kp(y) = 0. (8)

Hence, the Simsek and Yalgin’s bound-state problem proves solvable in terms of
the hypergeometric power series o Fi (s, £; ¢; y) with parameters

S=p+vtk t=p+v—k, c=2u+1. (9)
Thus, an explicit general representation of solutions ¢(y),

Ciy™ JFi(s,d;e;1 = 1/y) + Coy T (v = 1) 2R (f,1 — ;2 — ;1 — 1/),
d=s—c+1l=—p+v+r+1/2,

e=s+t—c+1=2w0+1/2, f=c—t=p—-v+r+1/2 (10)

(ff. 15.5.11-15.5.12 in [4]) is suitable for analysis near y =~ 1, while the use of
formula

Lp(y) = Dly"s ZFI(S, d;2k + 1, l/y) + Dzy—’ zFl(l, 1 -—f; -2k +1; 1/)/) (11)
(cf. [4], ff. 15.5.7-15.5.8) may prove more adequate at large distances, y — oo.

2.2. BOUNDARY CONDITIONS

In accordance with textbooks, bound states (pertaining to any eq. (2)) may be
constructed as superpositions of an arbitrary pair of independent solutions,

YE)(r) = Ciahi(r) + Cata(r) (12)

(cf., e.g., [5]). The normalizability of these wavefunctions must be required,
19| < co. At I1, this normalizability may be shown equivalent to a pair of
boundary conditions. Thus, one may use the asymptotic boundary condition

PY(roo) =0, Fo — 00, (13)
complemented by its /-dependent threshold counterpart
Y(rg) ~ 't g ~0. (14)

Even for sufficiently well-behaved potentials, the situation is slightly different in
s-waves where the unphysical solution remains well behaved near the origin,
WY(ieregular) (70) ~ r~!, ro ~ 0. Its elimination (14) has, definitely, nothing to do with
normalizability (cf. [1], p. 332, or [5] for a more thorough explanation). This is, pre-
sumably, the hidden reason for a complete omission of eq. (14) from the analysis
inref. [3] and, hence, a formal core of our present comment.

In the computations, the pair of restrictions (13) and (14) is rarely used to specify
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both the coefficients C; and the binding energy at once. More often, a component
(say, v1(r)) is chosen as compatible with boundary condition (14) in the origin.
Only then, the resulting (so-called regular) solution %)) (r) is subdued to the sec-
ond constraint (13). This defines the energies in a way exemplified in section 3.1
below.

Alternatively, one may fix the asymptotics (13) and construct the so-called Jost
solutions 9 (jost)(r) first. In our present example, after the redefinition ¥ — ¢ (eq.
(7)), the correct asymptotic behaviour pattern

SO(JOSI)(,V) ’%y—sa y > 1 ; (15)

will be most easily separated from the unphysical @(nphys)(¥) = y~'. In the not
too singular cases, the pertaining s-wave eigenvalue condition (14) reads

w(Jost)(O) =0, I=0. (16)

Its use has thoroughly been discussed in our earlier work [6].

The manifestly Jost wavefunctions of Simsek and Yalgin do not satisfy eq. (16)
in general — after all the changes of variables, eq. (16) implies that we must postu-
late, as an eigenvalue condition, the nodal zero

@uosy(¥0) =0, yo =cosh’8, 6>0, (17)

in all the shifted “non-Poschl-Teller” cases. Incidentally, the Poschl-Teller limit
§ — Oinduces a strong singularity in eq. (3) itself. A modified boundary condition

W(Jost)(yﬂ)<oo? yo—1, v>1/4, 6=0, (18)
must be employed near the threshold in such a case ([1], p. 392).

3.Bound states as Jacobi polynomials
3.1. THE POSCHL-TELLER DEGENERACY, 6§ =0

Irrespectively of the value of §, boundary conditions should be met via a varia-
tion of the above general solutions of the differential Schrodinger eq. (8). At
§ = 0, an undesirable singularity of the general solution (10) in the origin stems
from the negative exponent 1 — e < 0 in its second component. This (i.e., eq. (18))
implies that we must pick up C; = O there.

An analytic-continuation re-arrangement of the function y*areg) () / C1,

['(e)T'(—2k) T'(e)T'(2k)

F—(i———_f)—m zFl(S,d;ZK,-’r 1; l/y) +y2n W

2F1(1 1,61 -2k;1/y)
(19)

([4], f. 15.3.6) describes the correct asymptotic behaviour violated by the second
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component. Its suppression (13) may only be mediated by the choice of a negative
argument in a I'-function in the denominator. There is just one such choice,
d=—-n,n=0,1,..., and it quantizes the energies precisely in the way prescribed
by eq. (4) above. The hypergeometric formula for wavefunctions degenerates to a
polynomial,

o)~y 2R (2p—n—1/2,—m 25 + 1;1/y) ~ y~* 2Fi(s, ~n;6;,1 = 1/y)
(20)
and returns us back to the well-known Poschl-Teller bound states ([2], p. 89).

In a slight modification of the latter construction, we start from the Jost solution
(11). Re-arranging the D, = O series as an analytic-continuation superposition

Yol) _T(1 —el'(+2x)
— cerl —1
Dl P(f)P(l—t) ZFI(S7daea1 /y)
e Tl =—e'2c+1)
1 _ 1 1—e
([4], £. 15.3.6), we notice that the second term exhibits an irregular behaviour at
6 = 0. Its suppression leads to the same quantization rule as above.

2F(1-1.f512-1-1/y) (21)

3.2. THE SHIFTED POSCHL-TELLER POTENTIALS, § > 0

Due to a certain hidden symmetry of hypergeometric functions, all the § =0
bound states became expressible in terms of elementary Jacobi polynomials. In sev-
eral independent contexts ranging from analytic considerations up to the formal-
ism of supersymmetric quantum mechanics [7], one would not really expect an
extension of such a Jacobi-solvability phenomenon beyond the already known (so-
called shape invariant [8]) class of potentials. Nevertheless, a partial, incomplete
generalization does not seem excluded.

At 6 > 0, condition (16) has to be satisfied at y = cosh? §,

2Fi(s,d; 25+ 1;1/ cosh?§) = 0. (22)

Both components of eq. (21) may now contribute equally well. Whenever the singu-
larity 6'=* in the numerator of the second component remains finite, it may be
compensated and regularized by a large value of the function I'(d) = O(1/A) with
a perturbed integer argumentd = —N + Ainthe denominator. Thus, we encounter
the loss of polynomiality and the left hand side remains an infinite series. The roots
k = k(6) must be determined numerically. At the smallest §’s, the compensation
mechanism with A = O(6*~!) might also be used as a starting point of perturbative
constructions.

3.2.1. The ‘forgotten’ boundary condition
Let us accept now the point of view of Simsek and Yalgin and assume that a cer-
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tain Jacobi polynomial represents a physical solution at § # 0 as well. Such an
assumption need not necessarily contradict our previous perturbative argumenta-
tion — we must only fine tune the parameters and preserve the termination condition
unchanged, A = 0. In such a case, eq. (20) extends its validity to shifted potentials
and, in the Simsek’s and Yalgin’s notation, we just postulate

x(r) = NuP(1 —u2) @t 22 ples) 02 _ 1) (23)
Here, P denotes a Jacobi polynomial,
“ (N
P (x) = 27 ( +°‘> (”’Lﬂ)(x- 1" (x4 1) (24)
—=\ m n—m

(cf. [4], ch. 22) and the range of the new coordinate remains finite,

y= u(r) = 2bexp(—ar)

1+ b2exp(—2ar)’ b<l.

On the occasion, two typographical errors are revealed in the original elementary
formula for wavefunctions as printed, incorrectly, in ref. [3] under the number of
eq. (22)[9].

Let us now analyse the condition of polynomiality A = 0 in more detail. We
haveu(r) — Onearr — oo and, since

PR (22 — 1) - ,(,"‘"’)(—1)=(—1)"<n+ﬁ>’ (25)

n

we get the correct asymptotic r-dependence (13) of the polynomial x(r)’s. Near
the origin, Jacobi polynomials differ from x () by anirrelevant nonzero factor,

0 <u(0)=1/cosh§ <1, 1>1—][u(0)]> = (sinh§/coshb)®>0. (26)
This reduces the second, threshold boundary condition to the relation
1 —sinh? 6
pef| " — ~ )V =0, §>0, 27
" ( cosh? § ) (27)

which interrelates, polynomially, parameters v = y(a,b,4), @ = a(a, b, B) and
w = sinh? §(b) at each particular value of ,

Z(n—%—a)('y a—n 1)(—w)"""=0. (28)
=\ om n—m
We may conclude that each Simsek’s and Yalgin’s (corrected) elementary solution
(23) represents a bound state if and only if the implicit eq. (28) relates its shift
parameter b < 1 to the couplings 4 and B and to the scale parameter a in the under-
lying (in the language of ref. [10], “quasi-exactly solvable”) Schrodinger equation

Q).
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3.2.2. The quasi-exact solutions

At all the nonzero shifts § > 0, one may insist on the polynomiality of wavefunc-
tions at a cost of fixing parameters in the underlying potential. In the literature,
such a solvability has been studied quite extensively [10] —in our ¥ = V@78 (r), we
shall hardly find more than three separate bound states in the exact Jacobi polyno-
mial form. Seemingly, one must even search for the necessary roots of eq. (28)
numerically. In our final remark, let us show that a non-numerical solution of the
Jacobi-solvability egs. (28) remains feasible, at the first few truncations » at least.

Our first (obvious and negative) observation concerns the absence of any real
roots of eq. (28) at n = 0: One simply has Pg"ﬂ (x) = 1 identically. In contrast, the
subsequentn > 1 physical boundary conditions (28),

l+a—-(y—a—-2w=0,
C+a)(l+a)-22+a)y—a=3)w+(y—a-3)(y—a—-4uw*=0, (29)

provide the first few ““dependent” couplings v = v;(a,w,n),j=1,2,...,n, in a
closed form,

mle,w, 1) =24+ a+ (14 a)/w,
Nlew,2) =7/24 a+ (2 +a)/w—/1/4+ 2+ a)(1/w+1/u?),

lonw,2) =7/24 e+ 2+ a)jw+ \/1/4+ 2 +e)(1fw+1/w?),  (30)

They remain real and positive (cf. also their next, » = 3 sample in table 1). This
proves the existence of the exceptional Simsek and Yalgin’s Jacobi-polynomial
bound states at § # 0, and illustrates also the last and “missing” details of their
construction.

A combination of the first two truncations » = 1 and n = 2 leads to the coupled
system of equations (cf. (29)) and gives a mutual compatibility condition

l+a
w = 5 n1=1,n2=2. (31)
Table 1
The triple roots -y = 71 23(a, w, 3) of eq. (28) —a sample.
w a=0.1 a=1 a=10
0.1 8439 28.71 71.15 13.85 38.71 85.44 83.32 1379 2138
1 4.358 7.200 13.04 5.576 9.000 1542 19.65 27.00 37.35

10 4.102 5.203 6.924 5.007 6.167 8.026 14.18 1597 1875
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The real-number nature of this root proves the existence and illustrates the form
of a doublet of the elementary Simsek and Yalgin’s bound states at the correspond-
ing § = §(w). The problem of doublets acquires a slightly simplified form at the spe-
cial value of w = sinh®§ = 1. Under this choice, a systematic analysis of the pair
of equations

PEA0) =0, PEA(0)=0 (32)
enables us to re-write the second row in table 1 exactly,

m(e,1,3) =2a+ (17 — V73 + 240) /2,

Y(a,1,3) =2a+7, m(e,1,3) =2a+ (17+ V73 + 240)/2.

The simplest possible triplet choice of n; = 1, np = 2 and n3 = 3 provides, after an
analogous algebra, the three non-numerical and real roots o = -1, @ = —2 and
o = —3. Unfortunately, they are negative and, hence, unacceptable. The existence
of triplets remains an open question.

4.Summary

The polynomiality of solutions of Schrodinger-type equations (which is, in itself,
formally interesting, e.g., due to its relationship to some underlying Lie-algebraic
structures [11]) need not necessarily imply their applicability in quantum
mechanics. We have seen that a due care must be paid to the s-wave boundary con-
ditions in the origin. After their proper incorporation, we have shown that only a
few Simsek—Yalgin “exact” solutions survive: For the related potential, certain
couplings must be determined as roots of complicated algebraic equations and
cease to be arbitrary. Moreover, all the remaining nonexceptional bound states
must still be constructed via an appropriate standard infinite Taylor series techni-
que or, at best, in terms of some suitable — here: Gauss hypergeometric — special
functions.
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